346 (FT)

नाम ......

# 151

# 2024

# भौतिक विज्ञान

समय : तीन घण्टे 15 मिनट]

[पूर्णीक : 70

# निर्देश :

- (i) प्रारम्भ के 15 मिनट परीक्षार्थियों को प्रश्न-पत्र पढ़ने के लिए निर्धारित हैं।
- (1) सभी प्रश्न अनिवार्य हैं ।
- (iii) इस प्रश्न-पत्र में पाँच खण्ड हैं खण्ड अ, खण्ड ब, खण्ड स, खण्ड द और खण्ड य ।
- (iv) खण्ड अ बह्विकल्पीय है तथा प्रत्येक प्रश्न का 1 अंक है ।
- (v) खण्ड ब अति लघु-उत्तरीय है तथा प्रत्येक प्रश्न का 1 अंक है।
- (vi) खण्ड स लघु-उत्तरीय प्रकार-1 का है तथा प्रत्येक प्रश्न के 2 अंक हैं ।
- (vii) खण्ड द लघु-उत्तरीय प्रकार-II का है तथा प्रत्येक प्रश्न के 3 अंक हैं ।
- (viii) खण्ड य विस्तृत-उत्तरीय है । प्रत्येक प्रश्न के 5 अंक हैं । इस खण्ड के सभी चारों प्रश्नों में आन्तरिक विकल्प का चयन प्रदान किया गया है । ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना है ।
- (ix) प्रश्न-पत्र में प्रयुक्त प्रतीकों के सामान्य अर्थ हैं ।

# खण्ड अ

- (क) विद्युत आवेश एक छोटे आयतन में एकसमान वितरित हैं । 2 सेमी त्रिज्या के गोलीय पृष्ठ से कुल आवेश को घेरते हुए विद्युत क्षेत्र का फ्लक्स 10 V × m है । 4 cm त्रिज्या के गोलीय पृष्ठ पर फ्लक्स होगा :
  - (i)  $10 V \times m$  (ii)  $20 V \times m$
  - (iii)  $40 V \times m$  (iv)  $80 V \times m$
  - (ख) एक गतिशील आवेश उत्पन्न करता है :
    - (i) केवल विद्युत क्षेत्र
    - (ii) केवल चुम्बकीय क्षेत्र
    - (iii) विद्युत एवं चुम्बकीय क्षेत्र दोनों
    - (iv) उपर्युक्त में से कोई नहीं

1

| (ग)        | निर्वात में संचरित होने वाली विद्युत-चुम्बकीय तरंग<br>E = E <sub>0</sub> sin (kx – ωt), B = B <sub>0</sub> sin (kx – ωt) से प्रदर्शित है, तब होगा :                                                                                                                                                                                                                                                                          | 1 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|            | (i) $E_0 k = B_0 \omega$ (ii) $E_0 B_0 = \omega k$                                                                                                                                                                                                                                                                                                                                                                           |   |
|            | (iii) $E_0 \omega = B_0 k$ (iv) $E_0 B_0 = \sqrt{\omega k}$                                                                                                                                                                                                                                                                                                                                                                  |   |
| (घ)        | <ul> <li>1·2 अपवर्तनांक के पदार्थ से एक उभयोत्तल लेंस बना है जिसकी दोनों सतह उत्तल हैं । यदि</li> <li>इसको 1·33 अपवर्तनांक वाले जल में डुबोते हैं तो वह कार्य करेगा :</li> <li>(i) एक अभिसारी लेंस की तरह</li> <li>(ii) एक अपसारी लेंस की तरह</li> <li>(iii) एक आयताकार गुटके की तरह</li> </ul>                                                                                                                              | 1 |
|            | (iv) एक प्रिज़्म की तरह                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| (종)<br>(च) | समीकरण $E = pC$ में, $E - 3$ - ऊर्जा तथा $p - संवेग है । यह समीकरण लागू होता है :(i) इलेक्ट्रॉन तथा फ़ोटॉन के लिए ।(ii) इलेक्ट्रॉन के लिए परन्तु फ़ोटॉन के लिए नहीं ।(iii) फ़ोटॉन के लिए परन्तु इलेक्ट्रॉन के लिए नहीं ।(iv) न तो इलेक्ट्रॉन और न ही फ़ोटॉन के लिए ।p-n संधि में विसरण धारा का मान अपवाह धारा से अधिक होता है, यदि संधि संयोजित है :(i) अग्रदिशिक बायस में(ii) पश्चदिशिक बायस में(iii) बायस नहीं (unbiased)$ | 1 |
|            | (iv) किसी में नहीं                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|            | দ্বেণ্ড ৰ                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| (क)        | विशिष्ट चालकता (σ) एवं अपवाह वेग (v <sub>d</sub> ) में संबंध के लिए समीकरण लिखिए ।                                                                                                                                                                                                                                                                                                                                           | 1 |
| (ख)        | ऐम्पियर परिपथीय नियम का उल्लेख कीजिए ।                                                                                                                                                                                                                                                                                                                                                                                       | 1 |
| (ग)        | 1 kWh का मान जूल में निकालिए ।                                                                                                                                                                                                                                                                                                                                                                                               | 1 |
| (घ)        | स्व-प्रेरकत्व का विमीय समीकरण निकालिए ।                                                                                                                                                                                                                                                                                                                                                                                      | 1 |
| (ङ)<br>(র) | हाइड्रोजन परमाणु की आयनन ऊर्जा 13.6 eV है । इसके इलेक्ट्रॉन की n = 2 अवस्था में<br>आयनन ऊर्जा क्या होगी ?<br>एक तरंग के 'तरंगणा' की प्राणणा जीविय ।                                                                                                                                                                                                                                                                          | 1 |
| (च)        | एक तरंग के 'तरंगाग्र' की परिभाषा दीजिए ।                                                                                                                                                                                                                                                                                                                                                                                     | 1 |

346 (FT)

2.

3. (क) दिए गए परिपथ में 10 Ω वाले प्रतिरोधक में प्रवाहित धारा का मान ज्ञात कीजिए जबकि स्विच S खुला हो तथा बंद हो ।



- (ख) एकीकृत परमाणु द्रव्यमान मात्रक (amu) की समतुल्य ऊर्जा परिकलित कीजिए ।
- (ग) एकसमान चुंबकीय आघूर्ण ( $m_1 = m_2$ ) के दो चुंबक दिए गए चित्र की भाँति रखे हैं । यदि चुंबक  $A_1$  के द्वारा बिन्दु P पर चुंबकीय क्षेत्र की तीव्रता  $2 \times 10^{-3}$  टेस्ला हो, तो दोनों चुंबकों के कारण P पर परिणामी चुंबकीय क्षेत्र की तीव्रता ज्ञात कीजिए ।



(घ) सिलिकॉन p-n संधि डायोड में, 20 V का अग्र विभव लगाने पर उत्पन्न अग्र धारा 10 mA हो,
 तो इसका अग्र प्रतिरोध परिकलित कीजिए ।

## खण्ड द्

- (क) एकसमान विद्युत क्षेत्र में रखे वैद्युत द्विध्रुव पर लगने वाले बल-आधूर्ण का व्यंजक प्राप्त कीजिए । 3
  - (ख) 12 सेमी त्रिज्या के धारावाही वृत्ताकार कुण्डली के केन्द्र में उत्पन्न चुंबकीय क्षेत्र B की तीव्रता 0.5 × 10<sup>-4</sup> टेस्ता कुण्डली के तल के लम्बवत् ऊपर की ओर है । कुण्डली में प्रवाहित धारा के मान तथा दिशा का परिकलन कीजिए ।
  - (ग) पूर्ण-आंतरिक परावर्तन तथा क्रान्तिक कोण क्या होता है ? प्रकाशिक तन्तु (Optical fibre)
     किस सिद्धान्त पर कार्य करता है ?

3

346 (FT)

P.T.O.

3

3

2

 $\mathcal{L}$ 

 $\mathbf{2}$ 



- (ङ) अन्योन्य प्रेरकत्व की परिभाषा दीजिए । सिद्ध कीजिए, हैनरी मांग न्यूटन मीटर ऐम्पियर<sup>2</sup>
- (क) आदर्श अमीटर तथा आदर्श वोल्टमीटर का प्रतिरोध कितना होता है ? ऐमीटर तथा वोल्टमीटर को क्रमश: परिपथ के श्रेणीक्रम तथा समान्तर क्रम में क्यों जोड़ा जाता है ?
  - (ख) एक कुण्डली का प्रेरकत्व 0.4 हेनरी एवं प्रतिरोध 10 ओम है । यह 30 हर्ट्ज़, 6.5 वोल्ट के प्रत्यावर्ती स्रोत से जुड़ी है । इस परिपथ में व्यय औसत विद्युत शक्ति की गणना कीजिए ।
  - (ग) मैक्सवेल की विस्थापन धारा की व्याख्या कीजिए तथा इसका समीकरण लिखिए । इसके एवं चालन धारा के बीच कलान्तर कितना होता है ?
  - (घ) प्रकाश का व्यतिकरण क्या होता है ? (i) संपोषी व्यतिकरण तथा (ii) विनाशी व्यतिकरण की दशाएँ दर्शाइए ।

#### अथवा

प्रकाश के ध्रुवण से क्या तात्पर्य है ? पोलेरॉइड के सिद्धान्त तथा दो उपयोगों का उल्लेख कीजिए।

(ङ) 2.5 eV के कार्य फलन वाले धातु में 4000 Å की तरंगदैर्ध्य का प्रकाश डालने पर उत्सर्जित फोटो-इलेक्ट्रॉन के अधिकतम वेग तथा रेखोथ संवेग की गणना कीजिए।

4

3

3

3

3

6. स्थिर-वैद्युतिकी में गॉस नियम को लिखकर स्पष्ट कीजिए । इसकी सहायता में एकसमान आवेशित पतले गोलीय खोल (आवेश = q तथा त्रिज्या = R) के कारण विद्युत क्षेत्र का मान (i) खोल के बाहर (ii) खोल के माहर (ii) खोल के माहर (iii) खोल की सतह पर ज्ञात कीजिए ।

## अथवा

दिए गए परिपथ में निम्नलिखित की गणना कीजिए :



- (i) परिपथ की तुल्य धारिता
- (ii) 3 µF तथा 2 µF वाले संधारित्रों पर आवेश
- किरण आरेख की सहायता से परावर्ती दूरदर्शी में प्रतिबिंब बनने की व्याख्या कीजिए । अपवर्ती दृग्दर्शी से इसकी विशेषताओं की तुलना कीजिए ।

अथवा

तरंगों के विवर्तन तथा व्यतिकरण में अन्तर स्पष्ट कीजिए । एकल झिरी विवर्तन प्रारूप का गुणात्मक अवलोकन कीजिए ।

8. हाइड्रोजन परमाणु के लिए बोहर मॉडल के अभिग्रहीतों को स्पष्ट कीजिए । हाइड्रोजन परमाणु क ऊर्जा स्तर n = 1 तथा n = 4 के बीच संक्रमण के संगत (i) उत्सर्जन तथा (ii) अवशोषण स्पेक्ट्रम में प्राप्त स्पेक्ट्रमी रेखाओं को दर्शाइए ।

अथवा

नाभिक की बंधन ऊर्जा से क्या अभिप्राय है ? बंधन ऊर्जा प्रति न्यूक्लिआंन की ट्रव्यमान संख्या के संगत विचरण दर्शाइए । विखण्डन एवं संलयन अभिक्रियाओं की इस विचरण की महायता में विवेचना कीजिए ।

346 (FT)

5

5

5

5

Б

Ŭ

9. n-टाइप अर्धचालक की चालकता की गणना निम्नलिखित ओकही के की अप

| चालन इलेक्ट्रॉनी का धनत्व           | #  | $8 \times 10^{13}  {\rm cm}^{-3}$      |
|-------------------------------------|----|----------------------------------------|
| कोटरों का घनत्व                     | ÷. | $5 \times 10^{12} { m ~cm^{-3}}$       |
| इलेक्ट्रॉनों की गतिशीलता (mobility) | -  | $2.3 \times 10^4$ cm <sup>2</sup> /V-s |
| कोटरों की गतिशीलता (mobility)       | M  | 100 cm <sup>2</sup> /V-s               |

#### अथवा

p-n संधि के निर्माण में हासी स्तर तथा विभव रोधक की व्याप्त्या की प्रिए । अग्रीदशिक बादस तथा पश्चदिशिक बायस की दशा में दोनों में क्या परिवर्तन होता है ?

| भौतिक स्थिरांक :         |                                       |   |
|--------------------------|---------------------------------------|---|
| इलेक्ट्रॉन का द्रव्यमान  | $= 9.1 \times 10^{-31} \text{ kg}$    |   |
| प्लांक नियतांक (h)       | $= 6.6 \times 10^{-34} J_{-8}$        |   |
| प्रकाश चाल (c)           | $= 3 \times 10^8 \text{ ms}^{-1}$     |   |
| रिडबर्ग नियतांक (R)      | $= 1.097 \times 10^7 \mathrm{m}^{-1}$ | 1 |
| सिलिकॉन के लिए विभव रोधक | = 0·7 बाल्ट                           |   |
| $\frac{\mu_0}{4\pi}$     | $= 10^{-7} \text{ N/A}^2$             |   |
|                          |                                       |   |

## (English Version)

# Instructions :

- (i) First 15 minutes are allotted for the candidates to read the question paper.
- (ii) All the questions are compulsory.
- (iii) This question paper consists of five Sections -- Section A, Section B, Section C, Section D and Section E.
- (iv) Section A is of multiple choice type and each question carries 1 mark.
- (v) Section B is of very short-answer type and each question carries 1 mark.
- (vi) Section C is of short-answer type-I and each question carries 2 marks
- (vii) Section D is of short-answer type-II and each question carries 3 marks.
- (viii) Section E is of long-answer type. Each question carries 5 marks. All four questions of this section have been given internal choice. You have to do only one question from the choice given in the question.
- (ix) The symbols used in the question paper have usual meaning

346 (FT)

# Section A

- (a) Electric charges are uniformly distributed in a small volume. The flux of electric field through a spherical surface of radius 2 cm surrounding the total charge is 10 V × m. The flux over a sphere of radius 4 cm will be :
  - (i)  $10 V \times m$  (ii)  $20 V \times m$
  - (iii)  $40 V \times m$  (iv)  $80 V \times m$

# (b) A moving charge produces :

- (i) electric field only
- (ii) magnetic field only
- (iii) both electric and magnetic fields
- (iv) none of the above
- (c) An electromagnetic wave propagating through vacuum, described by  $E = E_0 \sin (kx \omega t), B = B_0 \sin (kx \omega t)$  then :
  - (i)  $\mathbf{E}_0 \mathbf{k} = \mathbf{B}_0 \boldsymbol{\omega}$  (ii)  $\mathbf{E}_0 \mathbf{B}_0 = \boldsymbol{\omega} \mathbf{k}$
  - (iii)  $E_0\omega = B_0k$  (iv)  $E_0B_0 = \sqrt{\omega k}$
- (d) A double convex lens is made of a material having refractive index 1.2. Both the surfaces of the lens are convex. If it is dipped into water of refractive index 1.33, it will behave like :
  - (i) a convergent lens
  - (ii) a divergent lens
  - (iii) a rectangular slab
  - (iv) a prism
- (e) The equation E = pC, (where E and p are energy and momentum respectively) is valid :
  - (i) for an electron as well as for a photon.
  - (ii) for an electron but not for a photon.
  - (iii) for a photon but not for an electron.
  - (iv) neither for an electron nor for a photon.

346 (FT)

1

1

1

1

(f) Diffusion current in a p-n junction is greater than the drift current in magnitude:

- (i) if the junction is forward biased
- (ii) if the junction is reverse biased
- (iii) if the junction is unbiased
- (iv) in none of them

# Section B

| 2. | (a) | Write the equation for relating relationship between specific conductivity ( $\sigma$ ) and drift velocity ( $v_d$ ).   | 1 |
|----|-----|-------------------------------------------------------------------------------------------------------------------------|---|
|    | (b) | State Ampere's Circuital Law.                                                                                           | 1 |
|    | (c) | Find the value of 1 kWh in Joule.                                                                                       | 1 |
|    | (d) | Deduce dimensional equation of self-inductance.                                                                         | 1 |
|    | (e) | Ionising energy of Hydrogen atom is 13.6 eV. In a state where $n = 2$ , what will be ionisation energy of its electron? | 1 |
|    | (f) | Define 'wavefront' of a wave.                                                                                           | 1 |

# Section C

3. (a) Find the current through the 10  $\Omega$  resistor when the switch S is open and closed in the given circuit. https://www.upboardonline.com



(b) Calculate energy equivalence of unified atomic mass unit.

8

2

(c) Two magnets of equal magnetic moment  $(m_1 = m_2)$  are placed as shown in the figure. If magnetic field intensity at P due to magnet  $A_1$  is  $2 \times 10^{-3}$  Tesla, then find out total magnetic field intensity at P due to both the magnets.



(d) In a Silicon p-n junction diode, for 20 V forward voltage the forward current produced is 10 mA. Calculate its forward resistance.

# Section D

- 4. (a) Deduce the formula of torque on an electric dipole placed in a uniform electric field. https://www.upboardonline.com
  - (b) The intensity of the magnetic field B due to a current-carrying circular coil of radius 12 cm at its centre is  $0.5 \times 10^{-4}$  Tesla perpendicular to the plane of the coil upward. Calculate the magnitude and direction of current flowing in the coil.
  - (c) What is total internal reflection and critical angle ? What is the working principle of Optical Fibre.
  - (d) In the given circuit, find the potential difference between A and B.



(e) Define Mutual Inductance. Show that  $\frac{\text{Henry}}{\text{Meter}} = \frac{\text{Newton}}{\text{Ampere}^2}$ .

3

9

3

3

3

2

 $\mathbf{2}$ 

3

3

3

3

3

- (a) What is the value of resistance of ideal ammeter and ideal voltmeter? Why are an ammeter and a voltmeter respectively connected in series and parallel of the circuit?
  - (b) A coil has a resistance of  $10 \Omega$  and inductance of 0.4 Henry. It is connected to an AC source of 6.5 V, 30 Hz. Find the average power consumed in the circuit.
  - (c) Explain Maxwell's displacement current and write its equation. What is the phase difference between it and the conduction current ?
  - (d) What is interference of light? Mention the condition for (i) constructive and (ii) destructive interference.

## OR

What is polarization of light? State the principle and two uses of a polaroid. 3

(e) Find the maximum magnitude of velocity and linear momentum of a photoelectron emitted when light of wavelength 4000 Å falls on a metal having work function 2.5 eV.

#### Section E

6. State and explain Gauss's law in electrostatics. Using it, find the electric field due to a uniformly charged thin spherical shell (charge = q and radius = R) at (i) external point of shell (ii) internal point of shell and (iii) on the surface of shell.

## OR

Calculate the following in the given circuit :



- (i) The equivalent capacitance of the circuit
- (ii) The charge on 3  $\mu$ F and 2  $\mu$ F capacitors

346 (FT)

5.

5

Explain image formation in a reflecting telescope with the help of a ray diagram.
 Compare its qualities with a refracting telescope.

#### OR

Explain the differences between diffraction and interference of waves. Observe qualitatively the diffraction pattern of a single slit.

5

5

5

5

5

8. Explain postulates of Bohr's model for Hydrogen atom. Show the number of lines in the (i) emission and (ii) absorption spectra of Hydrogen atom corresponding to transition between energy states n = 1 and n = 4.

# OR

What is meant by binding energy of a nucleus ? Draw variation of binding energy per nucleon against the mass number. Discuss fission and fusion with the help of this variation.

9. Calculate the conductivity of an n-type semiconductor from the following data : 5 Density of conduction electrons =  $8 \times 10^{13}$  cm<sup>-3</sup> Density of holes =  $5 \times 10^{12}$  cm<sup>-3</sup> Mobility of electrons =  $2 \cdot 3 \times 10^4$  cm<sup>2</sup>/V-s Mobility of holes = 100 cm<sup>2</sup>/V-s OR

Explain the depletion layer and potential barrier in the formation of p-n junction. How are both changing in the condition of forward biasing and reverse biasing ?

| Physical constants :    |                                       |   |
|-------------------------|---------------------------------------|---|
| Mass of electron        | $= 9.1 \times 10^{-31}  \text{kg}$    |   |
| Planck's constant (h)   | $= 6.6 \times 10^{-34} \text{ J-s}$   |   |
| Speed of light (c)      | $= 3 \times 10^8 \text{ m/s}$         |   |
| Rydberg constant (R)    | $= 1.097 \times 10^7 \mathrm{m}^{-1}$ | L |
| Potential barrier of Si | = 0.7 volt                            |   |
| <u>μο</u><br>4π         | $= 10^{-7} \text{ N/A}^2$             |   |

346 (FT)