N 632

	_			
Seat No.				

2024 III 15 1100 - N 632- MATHEMATICS (71) GEOMETRY-PART II (E)

(REVISED COURSE)

Time: 2 Hours

(Pages 11)

Max. Marks: 40

Note :--

- (i) All questions are compulsory.
- (ii) Use of a calculator is not allowed.
- (iii) The numbers to the right of the questions indicate full marks.
- (iv) In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
- (v) Draw proper figures wherever necessary.
- (vi) The marks of construction should be clear. Do not erase them.
- (vii) Diagram is essential for writing the proof of the theorem.

1.	(A)		er alternative answers for each of the following questions are given. Choose the correct siterastive see
			te its alphabet:
		(1)	Out of the dates given below which date constitutes a Pythagaren
			triplet ?
			(A) 15/8/17
			(B) 16/8/16
			(C) 3/5/17
			(D) 4/9/15
		(2)	$\sin \theta \times \csc \theta = ?$
			(A) 1
			(B) 0
			$(C) \qquad \frac{1}{2}$
			(D) $\sqrt{2}$
		(3)	Stope of X-axis is
			$\mathbf{(A)} = 1^{-1}$
			(B) -1 ·
			$(\mathbf{C}) = 0$

Cannot be determined

(D)

(4)	A circle having radius 3 cm, then the length of its largest							
	chord is							
	(A) 1.5 cm							
	(B) 3 cm							
	(C) 6 cm							
	(D) 9 cm							
Solv	re the following sub-questions:							
(1)	If \triangle ABC - \triangle PQR and AB : PQ = 2 : 3, then find the value							
	of $\frac{A(\Delta ABC)}{A(\Delta PQR)}$.							
(2)	Two circles of radii 5 cm and 3 cm touch each other externally.							
	Find the distance between their centres.							
(3)	Find the side of a square whose diagonal is $10\sqrt{2}$ cm.							
(4)	Angle made by the line with the positive direction of X-axis is							

45°. Find the slope of that line.

(**B**)

2 A Complete any two activities and rewrite it:

1

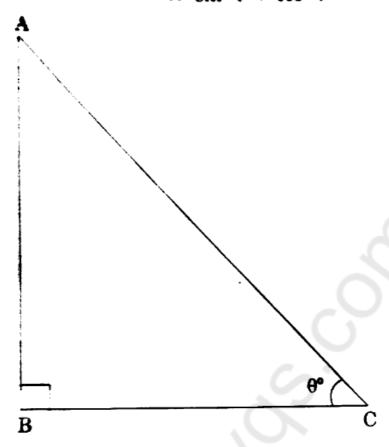
A C

In the above figure, ∠ABC is inscribed in arc ABC.

If $\angle ABC = 60^{\circ}$, find $m \angle AOC$.

Solution:

$$\angle ABC = \frac{1}{2} m(\text{arc AXC})$$


$$60^{\circ} = \frac{1}{2} m(\text{arc AXC})$$

= m(arc AXC)

But $m \angle AOC = \boxed{m(arc)}$ (Property of central angle)

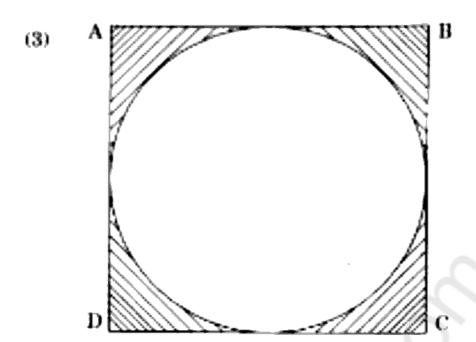
∴ *m*∠AOC =

 2^{1} Find the value of $\sin^{2}\theta + \cos^{2}\theta$.

Solution:

In
$$\triangle$$
 ABC, \angle ABC = 90°, \angle C = 0°.

$$AB^2 + BC^2 =$$
 (Pythagoras theorem)


Divide both sides by AC2

$$\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2}$$

$$\therefore \qquad \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = 1$$

But
$$\frac{AB}{AC} = \Box$$
 and $\frac{BC}{AC} = \Box$

$$\sin^2\theta + \cos^2\theta =$$

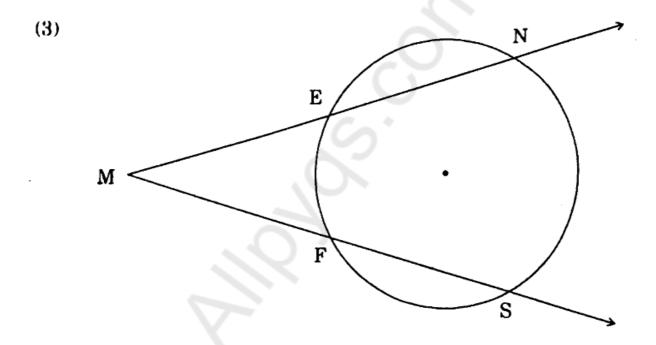
In the figure given above, ____ ABCD is a square and a circle is inscribed in it. All sides of a square touch the circle.

If AB = 14 cm, find the area of shaded region.

Solution: https://www.maharashtrastudy.com

Area of square =
$$\left(\frac{1}{2}\right)^2$$
 (Formula)
= 14^2
= 14^2

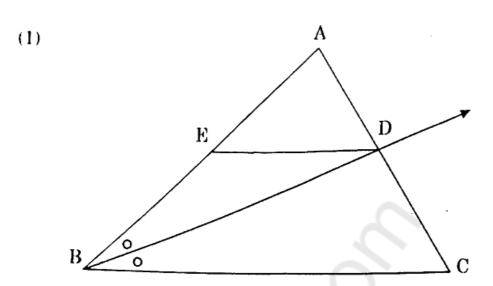
Area of circle = _______(Formula)


$$= \frac{22}{7} \times 7 \times 7$$

= 154 cm²

(B) Solve any four of the following sub-questions:

8


- (1) Radius of a sector of a circle is 3.5 cm and length of its arc is 2.2 cm. Find the area of the sector.
- (2) Find the length of the hypotenuse of a right-angled triangle if remaining sides are 9 cm and 12 cm.

In the above figure, $m(\text{arc NS}) = 125^{\circ}$, $m(\text{arc EF}) = 37^{\circ}$. Find the measure of $\angle NMS$.

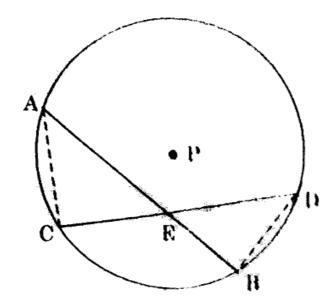
- (4) Find the slope of the line passing through the points A(2, 3), B(4, 7).
- (5) Find the surface area of a sphere of radius 7 cm.

3. (A) Complete any one activity of the following and rewrite it; 3

In \triangle ABC, ray BD bisects \angle ABC, A-D-C, seg DE \parallel side BC, A-E-B, then for showing $\frac{AB}{BC}=\frac{AE}{EB}$, complete the following activity:

Proof:

In ∆ABC, ray BD bisects ∠B


$$\therefore \qquad \frac{\Box}{BC} = \frac{AD}{DC} \dots (I) \left(\Box \right)$$

In ∆ABC, DE || BC

$$\frac{\Box}{EB} = \frac{AD}{DC} \dots (II) \left(\boxed{\Box} \right)$$

$$\frac{AB}{\Box} = \frac{\Box}{EB}$$
 [from (I) and (II)]

(2)

Given:

Chords AB and CD of a circle with centre I intersect at point K.

To prove:

$$AE \times EB = CE \times ED$$

Construction:

Draw seg AC and seg BD.

Fill in the blanks and complete the proof.

Proof:

In Δ CAE and Δ BDE

$$AE \times EB = CE \times ED$$
.

(B) Solve any two of the following sub-questions:

6

(1) Determine whether the points are collinear.

$$A(1, -3), B(2, -5), C(-4, 7)$$

- (2) \triangle ABC ~ \triangle LMN. In \triangle ABC, AB = 5.5 cm, BC = 6 cm, CA = 4.5 cm. Construct \triangle ABC and \triangle LMN such that $\frac{BC}{MN} = \frac{5}{4}$.
- (3) Seg PM is a median of \triangle PQR, PM = 9 and PQ² + PR² = 290, then find QR.
- (4) Prove that, 'If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the side in the same proportion'.
- 4. Solve any two of the following sub-questions:

8

- (1) $\frac{1}{\sin^2 \theta} \frac{1}{\cos^2 \theta} \frac{1}{\tan^2 \theta} \frac{1}{\cot^2 \theta} \frac{1}{\sec^2 \theta} \frac{1}{\csc^2 \theta} = -3, \text{ then find the}$ value of θ .
- (2) A cylinder of radius 12 cm contains water up to the height 20 cm. A spherical iron ball is dropped into the cylinder and thus water level raised by 6.75 cm. What is the radius of iron ball?
- (3) Draw a circle with centre O having radius 3 cm. Draw tangent segments PA and PB through the point P outside the circle such that ∠APB = 70°.

5.	Solve any one of the following sub-questions:	
	(1) ABCD is trapezium, AB CD diagonals of trapezium intersects in point P.	
	Write the answers of the following questions:	
	(a) Draw the figure using given information.	
	(b) Write any one pair of alternate angles and opposite angles	
	(c) Write the names of similar triangles with test of similarity	
(2	AB is a chord of a circle with centre O. AOC is diameter of circle, AT	
	is a tangent at A.	
	Write answers of the following questions:	
	(a) Draw the figure using given information.	
	(b) Find the measures of ∠CAT and ∠ABC with reasons.	
	(c) Whether /CAT and /ABC are congruent? Justify you	

answer.